MEASURE AND INTEGRATION 2018-2019 - FINAL EXAM

Instructor: Daniel Valesin

- 1. [15 points] Give an example of a Dynkin system that is not a σ -algebra.
- 2. [15 points] Show that if $f: \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous (that is, there exists c > 0 such that $|f(x) f(y)| \le c|x y|$ for any x, y) and $A \subset \mathbb{R}$ has $m^*(A) = 0$, then $m^*(f(A)) = 0$ (here m^* denotes the Lebesgue outer measure on \mathbb{R}).
- 3. [15 points] Evaluate

$$\lim_{n \to \infty} \int_0^\infty \frac{\sin(nx)}{\sqrt{x}} e^{-nx} \ dx.$$

- 4. [15 points] Prove that $\mathcal{B}^m \otimes \mathcal{B}^n = \mathcal{B}^{m+n}$ (here \mathcal{B}^d denotes the Borel σ -algebra in \mathbb{R}^d).
- 5. [15 points] Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and $f \in \mathcal{L}^p(\Omega)$, with $p \in (1, \infty)$. Let q be the conjugate exponent of p and define

$$F:\mathcal{L}^q(\Omega) o\mathbb{R},\quad F(g)=\int_\Omega fg\;d\mu.$$

Show that F is a bounded linear functional. Show that $||F|| = ||f||_p$.

- 6. (a) [8 points] Prove or give a counterexample to the following statement. Let (Ω, \mathcal{F}) be a measurable space and μ , ν be σ -finite measures on \mathcal{F} with $\mu \ll \nu$. Then, for any $\varepsilon > 0$ there exists $\delta > 0$ such that, if $A \in \mathcal{F}$ has $\nu(A) < \delta$, then $\mu(A) < \varepsilon$.
 - (b) [7 points] Let $f: \mathbb{R} \to \mathbb{R}$ be non-negative and integrable (with respect to Lebesgue measure). Let

$$F(x) = \int_{-\infty}^{x} f(t) dt, \quad -\infty < x < \infty.$$

Show that for any $\varepsilon > 0$ there exists $\delta > 0$ such that, for any $n \in \mathbb{N}$ and any real numbers

$$a_1 < b_1 < a_2 < b_2 < \dots < a_n < b_n$$

with $\sum_{i=1}^{n} (b_i - a_i) < \delta$, we have $\sum_{i=1}^{n} |F(b_i) - F(a_i)| < \varepsilon$.